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An express ion  is obtained for  the mean heat- radia t ion intensity of a plane Layer, taking account 
of turbulent pulsations.  

In calculating the radiation oi volumes filled with turbulent gas or p lasma,  it is usual to use a field of 
thermodynamic  p a r a m e t e r s  averaged over  a sufficiently large time interval. However,  the local tempera ture  
and concentrat ion values of the radiat ing components in turbulent flows pulsate i r regula r ly  about the mean 
value. Because the emiss iv i ty  depends nonlinearly on the t empera tu re ,  the t ime-averaged  radiation intensity 
(as recorded  on an instrument) may differ f rom the value of the radiation determined f rom the mean values 
of the t empera tu re  and concentrat ion fields. 

The effect  of turbulent pulsations on the thermal  radiation was considered ea r l i e r  in [1, 2]. In [3, 4], 
this problem was discussed in connection with es t imates  of the accuracy  of optical t empe ra tu r e -measu remen t  
methods. In [1], a t r ans fe r  equation was obtained for the case of optically thin pulsations defined by the r e l a -  
tion ~l << 1 (~ is the absorption coefficient,  l is the charac te r i s t i c  dimension of the large turbulent bodies). 
The opposite l imiting case ~l 7> 1 was considered essent ia l ly  without paying attention to absorption pulsations. 
For  the intermediate  case ~l ~ 1, some interpolation of the resul ts  obtained for ~tl >> 1 and ~tl << 1 was p ro -  
posed. Absorpt ion pulsations were taken into account in a l inear  approximation and pulsations of the Planck 
function in a quadrat ic  approximation with respec t  to the tempera ture  pulsations. 

In [2), this problem was solved using functional averaging.  However,  only the case of a combined nor -  
mal distr ibution of the Planck-funct ion and absorpt ion-coeff ic ient  pulsations was considered in [2]; this is 
valid for smal l  fluctuation ampli tudes,  and is in fact  t rue only for a l inear dependence of the Planck function 
and the absorption coefficient on the t empera tu re  fluctuations. 

The effect of turbulent  pulsations on the radiation would be expected to be at its greates t  in the blue r e -  
gion of the spec t rum,  which is charac te r ized  by a s t ronger  than quadrat ic  dependence of the Planck function 
on the t empera tu re  fluctuations. In [5], the effect  of turbulent pulsations on the radiation t rans fe r  was con- 
s idered in media with an a rb i t r a ry  spatial distr ibution of the mean tempera ture  and an exponential dependence 
of the Planck function on the t empera tu re  pulsations. The dependence of the absorption coefficient on the 
pulsating t empera tu re  component was assumed to be l inear in [5]. 

In the presen t  work,  the case of a quadrat ic  dependence of the absorption coefficient on the t empera -  
ture pulsations is considered,  allowing la rger -ampl i tude  absorpt ion-coeff ic ient  pulsations than in the l inear 
approximation to be taken into account. Because of the mathemat ical  difficulties involved, calculation is 
res t r ic ted  to the case of a s tat is t ical ly homogeneous layer.  

The instantaneous value of the radiation intensity corresponding to a fixed t empera tu re  and concent ra-  
tion dependence along the line of sight is expressed  as follows 

L 

I = I i (x) dx, (1) 

where 

L 

i(x) = B (x) • (x) exp {-- .I" • (y) dy}, (2) 
x 
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0 and L are  the l imits  of the radiating object;  B(x) is the Planck function; nix) is the absorption coefficient.  
Because of the t empera tu re  and concentrat ion pulsations in the d i rec t ion of observat ion,  the Planck function 
and the absorpt ion coefficient  osci l la te  in a d i so rder ly  manner  around the i r  mean values. In view of the 
ergodici ty  hypothesis ,  t ime averaging of the radiation in Eq. (1) may be replaced by averaging over  the en-  
semble of radiat ing objects.  Below, all the means are  understood to be means over  the ensemble.  

Considerat ion will be r e s t r i c t ed  to the blue spec t ra l  region. The dependence of the Pianck function on 
the t empera tu re  pulsations is then wri t ten in the fo rm 

B (x) --: Bo exp [[~t (x)l, (3) 

where B 0 is the Planck function for  the mean t empera tu re  (T), constant along the l aye r ,  while 

~J = hv/k ~, T ) ; (4) 

t(x) = I T ( x ) - -  ( T )  1/( T ) ; (5) 

T(x) is the instantaneous t empera tu re  at point x. The absorpt ion coefficient  depends on the t empera tu re  and 
concentrat ion.  The dependence onthe  t empera tu re  is usually the s t ronger .  In the p resen t  work,  the case in 
which the pulsating component of the absorpt ion coefficient  depends solely on the t e m p e r a t u r e  is  cons idered  
in the following m~nr~r:. 

• = ~[1 + =,t (x) + r (x)l, (6) 

where  k is the absorpt ion coefficient  de termined  f rom the mean t empera tu re ;  ~1 and ~ a re  dimensionless  
coefficients which do not depend on the spatial  coordinate.  

The resu l t  of averaging Eq. (1) depends on the fo rm of the mult idimensional  t empera tu re  distr ibution 
function t(x). However ,  there  is at p resen t  prac t ica l ly  no information on the distr ibution functions for  the 
pulsating p a r a m e t e r s  in turbulent  media [1, 6]. T h e r e f o r e ,  the s imples t  assumption regarding the d is t r ibu-  
tion function t(x) will  be made - specif ical ly ,  that t(x) is a Gaussian random process  with a mean value (t{x)) = 

0. 

Noting that the mean value of the integral  in Eq. (1) is equal to the in tegral  of the mean value of the 
integrand in Eq. (2), considerat ion may pass  to the calculation of the mean value of the functional in Eq. (2) 
fo r  a Gaussian p r o c e s s ,  taking into account that the t e m p e r a t u r e  dependence of the Planck function and the 
absorpt ion coefficient  is de termined  by Eqs.  (3) and (6): 

( i (x)) = Bo ( exp [l~t (x)l ~a--~.. ":it (y); xl ) ,  (7) 
U X  

where  

L 

x It (y); xl = exp { - -  S n [1 + =d (Y) + r tz (Y)] dy }. 
J~ 

In the case of a Gaussian p r o c e s s ,  according to [7], the mean value (i(x)) may be wri t ten  in the fo rm 

exp [~t (x)l d {~ [t (y); x]} ) = 

(8) 

(9) 
L 8 d 

= ( exp {~J it (x) + o' S R (x, y) 8TI (y~ dy]} ) "d-ff ( x[t (y) + ~1 (Y); x] ) in=0, 
x 

There  @2R(x, y ) -  (t(x)t(y)) is a co r re la t ion  function; a2 is the d ispers ion  of the t empera tu re  pulsat ions;  6/8~(y) 
is the funct ional-der ivat ive  opera to r ;  77(7) is a de te rmined  a r b i t r a r y  function, which must  be equal to ze ro  in 
the final express ion .  Averaging the t r ansmiss ion  in Eq. (8), which is the exponential  of a quadrat ic  functional,  
the following resu l t  is obtained [8]: 

1 

L Cm~ ~ 11 (I 2 
( ~ [ t ( Y ) + ~ ( y ) x l > = e x p { - - ~ ( L - - x ) - - ~ s I ~ O l ( Y ) + ~ l ~ ( y ) l d Y ) x  exp =~ 1 + 2 K ~ 2 Z m ~ z  " -  + 9 ~ 2 Z ~ )  , (10) 

L 

cm = ~ f (y) ~., (y) dy, (11) 
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I (y) = Ko Is, + 2azq (y), 

~0m(Y ) and k m oeing the eigenfunctions and e igenvalues  of the in tegra l  equation 

L 

~.,~,~ (y) = j" R (y, z) q,~ (z) az. 
x 

The e igenvalues  of the kerne l ,  which is the co r re la t ion  function, a re  posi t ive .  
radius  [9] shows that  the m a x i m u m  eigenvalue 

L 

~. ~< max i' R (y, z) dz. 

(12) 

(13) 

Estimation of the spectral 

(14) 

In p a r t i c u l a r ,  for  a co r re la t ion  function of the f o r m  

where  l is the c h a r a c t e r i s t i c  d imension  of the pu lsa t ions ,  Eq. (14) gives 

~ , ~ < 2 l [ l - - e x p ( .  L - - x  ) 1 . 2 l  

When the condition 

(15) 

(16) 

2Ka2o2~. < 1 (17) 

is sa t i s f ied ,  the infinite p roducts  and sums  in Eq. (10) may be t r a n s f o r m e d  as follows: 

I 

-~-~ In(l + = {-- -~-Z (-- (2tc~z'~ n- E k~} �9 
m~ l t ~ =  1 n =  l II m = l  

(18) 

1 --}- 2Kaao2~.m (--  2KCt20"z) '~- ' c2,,, )~n. (19) 
n =  1 m = z  I 

In the case of s y m m e t r i c  ke rne l s ,  wha teve r  the cor re la t ion  funct ions,  the sums  over  m may be wri t ten  in the 
f o r m  

L 

~'~ =S R~'~ (y' y) dy, (20) 
m ~ |  x 

2 # 2 n cm X,~ = l (y) [ (z) R(~) (y, z) @dz,  
m=| xx (21) 

where  R (n) is the i t e ra ted  kernel .  

Substi tuting Eqs. (18)-(21) into Eq. (t0),  and re ta in ing only the f i r s t  two t e r m s  in the sums over  n, the 
mean  t r a n s m i s s i o n  may  be obtained. If the de r iva t ive  of the t r a n s m i s s i o n  is then subst i tuted into Eq. (9) and 
subjected to the funct ional -shi f t  o p e r a t o r ,  the following express ion  is obtained: 

<i(x)> = < B • 2 1 5  (22) 

where  

<B• = B o K e x p ( l - q 2 ) [ l + m q  pqZ+pl; (23) 

< • > = K ( !  + p); 
(24) 

L L L 

A (x) = { 2 , ~  (R '~ ix, y)dy + ~,,,~ (~ + c)1"[~ + c~ ix, y)] [P, ix, y) - -  2,W.!'R ix, z)~ (y, z)d~] d y - -  
x x x 

(25) 
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L 

--p(xm)Z[ ~[l :~r  (x, y) R (x, y) dy] z) [1 ~. rnq q- pq2 q-p]-'; 
x 

(25) 

D (x) = -- Kmq R (x, y) -t- - ~  
x 

1 L L  

+ T ( )2J S i1 + y)l [l + (e (y, 
X X  

L L L  

.g x x  

- - ;  m = ~ c r ;  p=~aa2; q=-It~. 

(26) 

(27) 

It is readily evident that at small  optical depths of one pulsation (k/<< 1), A and D tend to zero  l inearly 
in kl and Eq. (22) t r ans fo rms  to the resul t  given in [1]. In this case ,  taking account of the turbulent t empera -  
ture pulsations reduces to replacing the product  of Planck functions by the absorption coefficient,  and r ep lac -  
ing the absorption coefficient determined f rom the mean t empera tu re  by the mean value of the local emiss ivi ty  
and the absorption coefficient. This replacement  may lead to an increase  by a few t imes in the radiation of a 
s tat is t ical ly homogeneous layer.  For  example,  when ~l = c~2 = 4, ~ = 5, a = 0.2, the radiation is three t imes 
l a r g e r  when turbulent  pulsations are  taken into account than in a calculation f rom the mean tempera ture .  

At smal l  values of the p a r a m e t e r  kl, the radiation of a homogeneous layer  may be written as a se r ies  
in powers of kl, Because the resul t ing express ions  are  cumbersome ,  only the resul t  for an infinite layer  in 
an approximation l inear in kl will be given 

! ) _--- (• (1 -- ~lH), (28) 
( u )  

1 ' mq(4p--m'Z)-~-~q[2q-}-2m+pqq-m(1-~-qZ)  (29) 
H = I mq.q_p q__~_pqZ_r - ~ ( l q - p ) ( l q - m q + P q 2 q - P )  

Under the condition 4p > m 2, which means that the instantaneous values of the absorption coefficient are  non- 
negative,  H > 0. There fo re ,  taking into account that kl is finite reduces  the radiation of the layer .  

To es t imate  the effect of kl on the radiation of a l ayer  of finite thickness for sufficiently large kL 
Eq. (22) was numerical ly  integrated,  taking account of Eqs.  (23)-(26) with the corre la t ion function in Eq. (15). 
The resul ts  of the calculation show that taking account of A and D in Eq. (22) always reduces the radiation. 
This reduction becomes significant when kl is sufficiently large and when the pulsation amplitude of the absorp-  
tion coefficient and the Planck function becomes comparable  with their  mean values,  i .e . ,  at sufficiently large 
values of a 1, a 2, and/3. The physical  reason for  this reduction is the negative corre la t ion  between the local 
emiss ivi ty  and the t ransmiss ion .  In Fig. 1, as an example,  the radiation of the layer  as a function of its opti-  
cal depth is shown for  the p a r a m e t e r  values a 1 = a2 = 4, /3 = 5, a = 0.2, ensur ing sufficiently large fluctuations 
of the Planck function and the absorption coefficient. The upper curves are  obtained in the approximation of 
optically thin pulsations [1] and the lower without taking account of the pulsations. It is evident f rom Fig. 1 
that calculations using Eq. (22) are  little different f rom [1] right up to values kl ~ 0.5. When kl = 1, the opti-  
caUy thin pulsation approximation gives a threefold increase  in the radiation, whereas  calculation f rom Eq. (22) 

gives an approximately twofold increase .  

Final ly ,  an o rder -o f -magni tude  es t imate  will be made of the t e rms  omitted from Eqs. (18) and (19), which 
a re  of third o rde r  and higher  in ~'m. The relative contribution of the omitted t e rms  ~a 2 = (2k~2a2Z) 2. Using 
Eq. (16) for  s and noting that the region L - x ~ k - i  makes the main contribution to the radiation of the l ayer ,  

it is found that for  this region 

a = 4~l~2a 2 I - -  exp . 2~-1-- " 
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Fig. 1. Radiation of turbulent  
l aye r  as a function of the opt i -  
cal thickness k/: 1) d i s r eg a rd -  
ing pulsat ions;  2) for  optically 

thin pulsations [1]; 3-5) calcu-  
lation f rom Eq. (22) with kl = 
0.3 (3), 0.5 (4), i (5). 

F o r  c~ 2 = 4, a = 0.2, kl = 1, the t e rms  ignored in Eqs.  (18) and (19) give a re la t ive  contribution ~0.1,  d e c r e a s -  
ing with dec rease  in kl. 
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